
REGULAR ARTICLE

Exchange repulsion between effective fragment potentials
and ab initio molecules

Daniel D. Kemp • Jamie M. Rintelman •

Mark S. Gordon • Jan H. Jensen

Received: 17 August 2009 / Accepted: 8 October 2009 / Published online: 10 November 2009

� Springer-Verlag 2009

Abstract The exchange repulsion energy and the Fock

operator for systems that contain both effective fragment

potentials and ab initio molecules have been derived,

implemented, and tested on six mixed dimers of common

solvent molecules. The implementation requires a balance

between accuracy and computational efficiency. The gra-

dient of the exchange repulsion has also been derived.

Computational timings and the current challenges facing

the implementation of the gradient are discussed.

Keywords Effective fragment potential � QM-EFP �
Exchange repulsion � Solvent

1 Introduction

The effective fragment potential (EFP) method has been

used to successfully model a variety of intermolecular

interactions, including solvent effects on ions and chemical

reaction mechanisms, solvent effects on electronically

excited states, mixed clusters of water with benzene, and the

study of liquids. The original implementation [1], called

EFP1, was designed exclusively for the water molecule. It

can be used to study a system exclusively containing EFP1

potentials, or a system in which EFP1 water potentials

solvate an ab initio solute within the general atomic and

molecular electronic structure system (GAMESS) [2, 3].

The second implementation [4], called EFP2, is a gen-

eral model potential that can be generated for any mole-

cular species. An EFP2 can interact with other EFP2

molecules via electrostatics, polarization, exchange repul-

sion, dispersion [5], and charge transfer [6]. Gradients for

each interaction type have been derived and implemented,

allowing the structural geometry to be optimized.

An EFP2 can be used in the presence of an ab initio

quantum mechanics (QM) molecule in GAMESS to cal-

culate energies at fixed geometries. Single point energies

are described through electrostatics, polarization, and

exchange repulsion interaction energies. Only single-point

energies may be calculated when an ab initio molecule is

present, because the gradient expression is not currently

available for the exchange repulsion energy, and the cur-

rently implemented EFP2–ab initio exchange repulsion

energy is an approximate one [7]. The development of the

EFP-QM dispersion interaction is currently in progress, in

a manner analogous to the EFP2–EFP2 prescription that

was implemented previously [5].

The exchange repulsion can be well accounted for at the

Hartree–Fock (HF) level of theory. The Morokuma–

Kitaura analysis [8] and the reduced variational space (RVS)

analysis developed by Stevens and Fink [9] are both well-

known methods for assessing the exchange repulsion and

other contributions to the HF energy and are available in

many electronic structure programs, including GAMESS.

The focus of the present work is on developing the theory

for the EFP2-QM exchange repulsion interaction, as well

as the implementation of an efficient computer code. The

ultimate goal is to implement the analogous dispersion

term as well, since that would provide a level of theory that
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is of second order perturbation theory quality, as has been

demonstrated for EFP2–EFP2 interactions [10–14]. The

current implementation of the exchange repulsion provides

a HF-quality model that can be used, for example, to model

non-aqueous solvent effects on chemical processes, such as

reaction mechanisms and UV spectroscopy. As has been

demonstrated previously [10–14], EFP2 including the dis-

persion interactions provides intermolecular interactions

whose quality is equivalent to that of second-order per-

turbation theory (MP2). The expectation is that once the

EFP2-QM dispersion interaction has been derived and

implemented, the quality of EFP2-QM calculations of

intermolecular interactions will also be of MP2 quality.

Section 2 of the present work considers the rigorous

expressions for the EFP-QM exchange repulsion energy

[15] and the corresponding Fock matrix [15] and gradient

expressions [16]. Implementations, results, and timings are

presented in Sect. 3. Successful and less successful

approximations are detailed in Sect. 4. Potential future

directions and the required derivatives for the gradient are

discussed in Sect. 5. Conclusions are drawn in Sect. 6.

2 Theory

The EFP2–EFP2 exchange repulsion energy expression [6]

has previously been used to calculate the inter-fragment

exchange repulsion (among EFP2 potentials). An analogous

(not derived) expression is available in GAMESS for the

EFP–ab initio exchange repulsion energy (between EFP2

potentials and ab initio molecules). The expression [6] for the

exchange repulsion energy with no approximations is

EXR¼�2
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The integrals in Eq. 1 are defined as follows:

ðijjijÞ ¼
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All orbital indices refer to molecular orbitals (MOs). MO /i is

always on molecule A (the ab initio molecule in the case

of EFP2/ab initio exchange repulsion) while MO /j is always

on molecule B (always an EFP2). Electrons 1 and 2 are

represented by r1 and r2, respectively. ZI is the atomic number

of the ith atom and R1I is the distance between electron 1 and

the ith atom. Sij is an intermolecular overlap integral, and Vij

contains the electron-nuclear attraction terms. JA
ij is commonly

referred to as a Coulomb integral and represents the

electrostatic repulsion between electron 1 and electron 2. KA
ij

is a quantum mechanical exchange integral. A sum is located

on both integrals in Eq. 5. JA
ij and KA

ij can be defined as follows,

where the orbital k always resides on molecule A

JA
ij ¼

X
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ijjkkð Þ ¼
X
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Approximations can be made to Eq. 1 to reduce the

computational time required to calculate the energy. For

example, the spherical Gaussian orbital (SGO) approximation

[17] can be applied to the exchange integral to cast it in terms

of the intermolecular overlap integral, Sij. Therefore, Eq. 2

can be approximated as

ðijjijÞ � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 ln Sij

p

r
S2

ij

Rij
ð8Þ

Consider the terms in Eq. 1 that depend upon the inter-

molecular overlap integral (to the first power), Sij. These

electron-nuclear attraction integrals and two-electron

integrals, VA
ij þ GA

ij and VB
ij þ GB

ij , can be rewritten to avoid

the computationally costly two-electron integrals by replacing

them with the Fock matrix elements of the monomers and the

kinetic energy integrals Tij:

VA
ij þ GA

ij ¼ FA
ij � Tij ¼

X

k2A

FA
ikSkj � Tij

VB
ij þ GB

ij ¼ FB
ij � Tij ¼

X

l2B

FB
jl Sil � Tij

ð9Þ

The Fock matrix elements of the monomers are obtained by

performing a HF calculation. Once the Fock matrix is

obtained in the atomic orbital (AO) basis, it is transformed

to the MO basis using the MO eigenvectors obtained dur-

ing the HF procedure. This matrix is stored on disk after

the transformation and is readily available.

By neglecting many of the smaller and off-diagonal inte-

grals that depend upon the intermolecular overlap to the sec-

ond power, some simplifications can be made. Specifically, a

nuclear-electron attraction integral and a two-electron integral

can be approximated as shown in Eqs. 10 and 11.
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Any integrals that remain are approximated by using

classical point-charge models
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The exchange repulsion energy in Eq. 1 can consequently

be approximated as [6]
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Equation 14 has been implemented in GAMESS and is

used to calculate the exchange repulsion energy between

EFP2 potentials. Equation 14 has also been implemented

previously to permit the calculation of the exchange

repulsion energy between an EFP2 and an ab initio QM

molecule; however, this equation has not previously

been extensively tested for EFP2-QM applications.

When a QM molecule is present, its orbitals are

localized at the end of the self-consistent field (SCF)

process and the exchange repulsion energy given by

Eq. 14 is calculated. However, an important assumption

that is used to derive Eqs. 1 and 14 is not rigorously

correct when a QM molecule is present. In general, in

HF theory,

FA/i ¼
X

k2A

FA
ik/k ð15Þ

In Eq. 15, FA is the Fock operator on molecule A and the

{/i} are the MOs. Equation 15 is used to derive Eqs. 1 and

14, but this equation is not strictly valid when an EFP2 is

present, because the EFP2 is not accounted for in the Fock

operator [15]. Therefore, Eq. 14 should not be used

without modification. An energy expression has been

derived for EXR that takes into account that both EFP2

potentials and ab initio molecules are present in the system.

This expression [8] is given without approximation in

Eq. 16.
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ð16Þ

To calculate the exchange repulsion energy (Eq. 16)

efficiently during the HF SCF iterations, approximations

must be applied. Because the orbitals on the ab initio

molecule are canonical (not-localized) MOs obtained

during the SCF iterations, some of the approximations

applied to Eq. 1 cannot be used to approximate Eq. 16. The

SGO approximation [17] can still be applied to the

exchange integral in the leading term of Eq. 16, but

the way in which it is applied must be modified. The

success of the SGO approximation depends upon the

availability of localized orbitals, so the integrals over MOs

on molecule A are transformed to the AO basis,

ijjijð Þ ¼
X

l

X

m

CliCmi ljjmjð Þ ð17Þ

where l and m are basis functions on the ab initio molecule.

The AOs are better suited for the SGO approximation

because they are localized on the atomic centers.

The SGO approximation defines two localized molecu-

lar orbitals (LMOs) as two spherical (s-type) Gaussian

functions [17]

/i ¼
2a
p

� �3
4

e�a r�Rij j2 and /j ¼
2a
p

� �3
4

e�a r�Rjj j2 ð18Þ

One can then obtain the corresponding exchange integral as

[18]

/i/jj/i/j

� �
� 2

a
p

� �1
2

e�aR2
ij ð19Þ

In the SGO approximation [17], a is obtained by equating

the Spherical Gaussian overlap with the actual overlap of

the appropriate LMOs

e�
1
2
aR2

ij ¼ Sij ð20Þ

Taking the log of both sides leads to Eq. 21

aij ¼ �
2

R2
ij

ln Sij ð21Þ

Two-electron integrals over s-type primitives A, B, C, D

are obtained as follows [18]:
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In Eq. 22 c is the exponent for function C, d is the

exponent for function D, Rp is the center of the product

Gaussian resulting from function A and B, RQ is the

center of the product Gaussian resulting from function C

and D.

Substituting alj for a and b, amj for c and d, and defining

Rp and RQ, one obtains
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.
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Equation 23 can be simplified to

ljjmjð Þ ¼ 2ffiffiffi
p
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F0 is the incomplete gamma function F0 t½ � ¼ 1
2

p
t

� �1
2erf t

1
2

� �
.

Equation 24 provides a value for the integral (lj|mj).

Transforming the integral in Eq. 24 to the MO basis gives

Eq. 17 [15].

The one-electron nuclear attraction term, VA
ij , is effi-

ciently calculated without approximation. Approximations

based on the SGO approximation have been proposed for

the two-electron integrals [8] JA
ij and KA

ij . Just as for the

exchange integral defined in Eq. 17, this approximation

must make use of the AOs on the ab initio molecule. JA
ij can

be expressed as

JA
ij ¼ ijjkkð Þ ¼

X

l

X

k

X

r

CliCkkCrk ljjkrð Þ ð25Þ

Applying the multipole approximation to Eq. 25 gives

ljjkrð Þ � Skr l R�1
1Qkr

���
���j

� �
ð26Þ

Next, the SGO approximation is applied to Eq. 26. For

s-type primitives, the approximate electron-nuclear attraction

integral in Eq. 26 can be written as [18]

Aj �ZI=r1Ið ÞjBð Þ ¼ �2p
aþ bð ÞZI exp �ab= aþ bð Þ RA � RBj j2

h i
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h i

ð27Þ

where ZI is the atomic number of atom I, a the orbital

exponent of orbital A, b the orbital exponent on orbital B,

RA the center of A, RB the center of B, Rp the center of the

product Gaussian formed from A and B, and RI is the

position of atom I.

Since a = b, Eq. 27 becomes
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Using the alj defined by the SGO approximation in Eq. 21,

Aj �ZI=r1Ið ÞjBð Þ ¼ �2p
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� exp �2= �2� RA � RBj j2
� �

RA � RBj j2ln Slj

�� ��
h i

� F0 2alj

� �
Rp � RI

�� ��2
h i

ð29Þ

Multiplying Eq. 29 by SGO prefactors and simplifying

Aj �ZI=r1Ið ÞjBð Þ ¼ � 8alj
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Therefore,
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ij ¼ ijjkkð Þ ¼

X

l

X

k

X

r

CliCkkCrk ljjkrð Þ

� �
X

l

X

k

X

r

CliCkkCrk
8alj

p

� �1
2

SljSkjF0 2aljR
2
PljQkr

h i

ð31Þ

Equation 31 is the proposed approximation to Eq. 25.

Approximations based on multipole expansions can be

used to simplify all of the terms that depend upon the

overlap squared [15]

FA
ik þ VB

ik þ JB
ik � FA

ik þ VES;B
ik � FA

ik þ VEFP;B
ik ð32Þ

ikjjjð Þ � i r1 � RJj j�1
�� ��k

� �
¼ V j

ik ð33Þ

Because the one-electron nuclear attraction integral

involves only one MO on B with the nuclei on molecule

A, it can be replaced [15] with a classical point-charge

approximation:

VA
jj �

X

j2B

X

I2A

�ZI

RjI
ð34Þ
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The remaining unapproximated terms in Eq. 16, the Fock

matrix elements and the overlap integrals are calculated

exactly. Finally, taking into account all of the foregoing

approximations, the exchange repulsion energy becomes

[15]

EXR � �2
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Before the desired EFP2-ab initio gradient can be

calculated, an exchange repulsion Fock operator must be

added to the one-electron part of the Fock matrix. The

contribution of the EFP2 exchange repulsion to the Fock

operator was derived by setting the variational derivative of

the exchange repulsion energy to zero [15]. By adding this

Fock operator to the Fock matrix of the ab initio molecule,

exchange repulsion effects are incorporated into the HF

calculation as the ab initio orbitals are being optimized

during the SCF iterations. The exchange repulsion Fock

operator is defined [8] as
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The expression for VXR
mi in Eq. 36 includes no

approximation. VXR
mi is designed to be calculated for every

pair of MOs m and i (both on the ab initio molecule) and

added to the one-electron Fock matrix on every SCF

iteration. When the approximations detailed in Eqs. 17–34

are applied to Eq. 36, one can obtain an approximate

expression for VXR
mi
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3 Results and implementation

If Eqs. 35 and 37 are implemented as presented here, unpre-

dictable and significant errors are introduced. By comparing

each term against the full energy expression (cf., Eq. 16) and

the Fock matrix operator (Eq. 36), it is clear that the approxi-

mated two-electron integrals in Eqs. 25–31 are the source of

this error. Consider the contribution of the two-electron

Coulomb integrals in Eq. 25. The contribution of these inte-

grals to the energy, including the multiplication by the overlap

integrals, can be written as

�2
XA

i

XB

j

Sij 4ðijjkkÞð Þ ð38Þ

The sum of these contributions for each MO i, j, and k is

presented for the water, methanol, and acetone dimers in

Table 1. This table also provides a comparison of the exact

two-electron integrals with the approximated integrals

obtained by using the approximations that lead to Eqs. 25–

31. Although the approximate integrals approach the exact

values for some of the dimers shown in the table, other

errors are large. The errors do not appear to be predictable.

Table 1 Comparison of exact and approximate Coulomb integral

contributions to the energy

Exact (h) Approximate (h) Error (kcal/mol)

Water -0.091867 -0.052722 -24.56

Methanol -0.121785 -0.123414 1.02

Acetone -0.082931 -0.078245 -2.94
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The errors shown in Table 1 are mainly due to the

multipole approximation (Eq. 26). The multipole approxi-

mation is inaccurate when the two electrons are not suffi-

ciently far apart; for example, if they are both in basis

functions on the ab initio molecule (l, k, r).

One of the primary goals of the EFP2-QM method is to

provide reliably accurate results. This cannot be accom-

plished with the errors that result from using Eq. 26. An

alternative is to use the exact two-electron integrals instead

of the approximate ones. That is, the two-electron integrals

(GA
ij ¼ 2JA

ij � Kij) in Eq. 16 are calculated exactly while all

other integral approximations used in Eq. 35 are retained.

This modified Eq. 35 will be referred to below as Eq. 350.
A test set of six dimers (shown in Fig. 1) was chosen to

benchmark the energy and Fock matrix elements for the EFP2/

ab initio exchange repulsion. The same test set was used to

benchmark the EFP2 exchange repulsion energy and gradient

for EFP2–EFP2 interactions [19]. Water, methanol, ace-

tone, acetonitrile, dichloromethane, and dimethylsulfoxide

(DMSO) dimers were optimized at the HF level of theory,

with the resulting structures illustrated in Fig. 1. At the

equilibrium dimer geometries, one monomer (B) was replaced

by an EFP2, with the monomer internal geometry.

The series of six dimer exchange repulsion calculations

based on Eq. 350 was benchmarked against the EFP2

method (both molecule A and B are EFP2s), the previously

implemented EFP2/ab initio exchange repulsion energy

using Eq. 14, and the Kitaura–Morokuma (KM) [8] energy

decomposition. The 6–31?G(d,p) [20–22] basis set was

used for the ab initio molecule in each dimer; the same

basis set was used to generate each EFP2. The results are

shown in Table 2. Equation 37 was added to the Fock

matrix of the ab initio molecule at each iteration of the HF

SCF process. For the DMSO dimer, SCF convergence was

achieved by disabling the polarization interaction between

the ab initio and EFP2 DMSO.

The KM energy decomposition provides the exact

exchange repulsion for a given AO basis set. For all six

dimers, Eq. 350 qualitatively reproduces the Morokuma

exchange repulsion energy. Except for the DMSO dimer,

Eq. 350 also quantitatively reproduces the Morokuma

exchange repulsion energy. It is clear that Eq. 350 is more

accurate than Eq. 14 when an ab initio molecule is present.

However, the accuracy of Eqs. 350 and 37 come at the cost

of computational expense. Table 3 provides the central

processor unit (CPU) time required to complete a single-

point energy calculation at the HF/EFP2 level of theory

using Eq. 14, the full HF level of theory for a dimer and a

HF/EFP2 calculation using Eqs. 350 and 37. All calcula-

tions were performed on a 1,200-MHz IBM Power4?. The

cost associated with Eqs. 350 and 37 is more than a full HF

dimer calculation.

To make the EFP2/ab initio exchange repulsion imple-

mentation more useful, especially for larger molecular

systems, the efficiency must be improved. The first code

modification was to calculate the exact two electron inte-

grals in the AO basis and use the integrals in the AO basis

to avoid the costly transformation to the MO basis.

Fig. 1 The six dimers used to test the implementation of the EFP2/

ab initio exchange repulsion. Starting with the structure in the top left
corner and moving clockwise, the dimer structures are for acetone,

acetonitrile, methanol, dimethylsulfoxide, dichloromethane, and water

Table 2 Exchange repulsion energy values for water, methanol,

dichloromethane, acetonitrile, acetone, and dimethylsulfoxide

(DMSO) dimers. All units are in kcal/mol

EFP2/EFP2 Eq. 14 Morokuma Eq. 350

Water 4.35 4.33 4.9 5.60

Methanol 4.34 7.84 5.15 5.94

Dichloromethane 0.27 2.22 0.79 0.87

Acetonitrile 2.05 9,145.39 2.21 2.28

Acetone 1.47 1.96 2.27 2.09

DMSO 6.31 Unconverged 6.38 7.53

Table 3 The total CPU time (in seconds) for the implementation of

Eq. 14, a Hartree–Fock dimer calculation and the implementation of

Eqs. 350 and 37

Eq. 14 Hartree–Fock Eqs. 350, 37

Water 0.4 1 1.8

Methanol 1.9 12.5 25.7

Dichloromethane 4.2 28.5 69.2

Acetonitrile 3.9 37.3 65.2

Acetone 4.0 136.1 273.5

DMSO 16.7 154.4 375.2
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The exchange repulsion energy (Eq. 350) is only calcu-

lated once during a single-point energy calculation once the

SCF process has converged. The Fock operator (Eq. 37) is

calculated every SCF iteration. Additionally, more CPU

time is spent determining the Fock matrix than the

exchange repulsion energy. Fortunately, this cost can be

reduced by examining the Fock matrix at various points in

the iterative process. As illustrated in Table 4 for water and

methanol, the repulsion contribution to the Fock matrix

undergoes very small changes from iteration to iteration.

Because the Fock matrix does not change significantly

over ten iterations, it is not useful to spend CPU time re-

calculating it every iteration. If the Fock matrix is calcu-

lated on the second iteration, and then re-calculated only

when the iteration index is divisible by 4 (the 4th, 8th, 12th

and so on), one obtains a significant speedup. On SCF

iterations when the exchange repulsion Fock operator is not

re-calculated, the most recently calculated Fock operator is

used. Table 5 assesses the accuracy obtained using this

approach. It is clear that there is essentially no accuracy

lost by calculating the repulsion contribution to the Fock

matrix only every fourth iteration. The corresponding CPU

time comparison is presented in Table 6, where it is seen

that considerable reduction in CPU time is achieved with

virtually no loss of accuracy.

4 Other approximations

For the DMSO dimer the cost of forming the exact two-

electron integrals needed to calculate GA
ij ¼ 2JA

ij � Kij

without approximation is 23.6 s, roughly one-third of the

time spent in the entire calculation (see last column in

Table 6). If the number of two-electron integrals to cal-

culate could be reduced, it would help reduce the largest

bottleneck of the calculation.

The Schwarz inequality [23] can be a useful tool for

avoiding the calculation of many integrals that are negli-

gibly small (or zero). For example, if (ij|kl) is less thanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðijjijÞ � ðkljklÞ

p
, then a block of integrals can be skipped.

The Schwarz inequality is commonly used in electronic

structure programs to avoid calculating integrals that are

too small to make significant contributions to the energy.

The EFP2/ab initio algorithm for the exact two-electron

integrals GA
ij ¼ 2JA

ij � Kij calculates integrals of the form

(nl|kr) (where n is the only index on molecule B). In order

to calculate the Schwarz inequality, one also needs the

integrals (nl|nl) and (kr|kr). The (kr|kr) integrals reside

entirely on the QM molecule and are obtained during the

HF calculation. The (nl|nl) integrals are an entirely new

(not presently calculated) class of integrals with two of the

four indexes residing on the EFP2. Instead of calculating

these integrals explicitly, the SGO approximation is used to

obtain these integrals. The algorithm implemented to

obtain Eq. 24 was modified to calculate (nl|nl) efficiently.

The Schwarz inequality has been implemented and the

results are given in Table 7. The second column in Table 7

provides the same CPU time as was provided in the last

column of Table 6. These computations were repeated after

Table 4 The greatest deviation and the average deviation of the

elements of the Fock matrix Vmi are provided (in Hartrees) for the

water and methanol dimer. The number of elements within the Fock

matrix which experienced a sign change is provided as well

Dimer Greatest

deviation

Average

deviation

Qualitative

changes

Water 6.20E-06 4.91E-06 2

Methanol 1.05E-03 1.72E-04 0

Table 5 The resulting exchange repulsion energies (in kcal/mol)

when Eq. 37 is recalculated every SCF iteration is compared against

the use of an approximate Eq. 37

Eqs. 350, 37 Approx. V

Water 5.60 5.60

Methanol 5.94 5.94

Dichloromethane 0.87 0.87

Acetonitrile 2.28 2.28

Acetone 2.09 2.07

DMSO 7.53 7.54

Table 6 CPU time (in seconds) required to use Eq. 14 for a EFP2/

QM calculation, a full Hartree–Fock dimer calculation and a EFP2/

QM calculation which recalculates Eq. 37 on the second, fourth, and

every other iteration number divisible by four

Eq. 14 Hartree–Fock Approx. V

Water 0.4 1 0.7

Methanol 1.9 12.5 5.9

Dichloromethane 4.2 28.5 14.6

Acetonitrile 3.9 37.3 11.7

Acetone 4 136.1 50.3

DMSO 16.7 154.4 63.2

Table 7 CPU time (in seconds) required to complete the EFP2/QM

energy calculation with and without use of the Schwarz inequality

w/Schwarz w/o Schwarz

Water 0.7 0.7

Methanol 5.8 5.9

Dichloromethane 14.2 14.6

Acetonitrile 11.3 11.7

Acetone 46.0 50.3

DMSO 57.1 63.2
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the Schwarz inequality was implemented as the CPU time

required for these calculations is given in the first column

of Table 7. The systems with more basis functions (DMSO

and acetone) benefit more from the Schwarz inequality

than smaller systems. The larger the system, the greater the

number of zero and nearly zero two electron integrals. By

using the Schwarz inequality, the 23.6 s required to cal-

culate the two-electron integrals for DMSO has been

reduced to 17.5 s.

Table 8 provides the number of non-zero two-electron

integrals required at the EFP2/QM and HF levels of theory

using the G3Large basis set [24]. The number of EFP2/QM

non-zero two-electron integrals includes all non-zero two-

electron integrals on the QM molecule as well as the

necessary EFP2/QM two-electron integrals. As the number

of basis functions grows, the number of integrals that the

EFP2/QM method avoids calculating grows when com-

pared against the number of integrals required for a HF

calculation. Therefore, the EFP2/QM method will be sig-

nificantly more efficient than HF calculations while pro-

viding consistent, accurate results.

Semi-empirical methods have a long and successful

history of ignoring many two-electron integrals while

retaining qualitative accuracy. So, preliminary tests have

been conducted to assess the possibility of employing

semi-empirical approximations to avoid the calculation of

many two-electron integrals. Traditionally, the complete

neglect of differential overlap (CNDO) [25] simplifies

the two-electron integral (nl|kr) to nnjkkð Þdnldkr. For the

EFP2/ab initio integrals of interest here, the first index

n resides on the EFP2 and must be considered as an

entirely different basis set from l. So, the zero differential

overlap approximation can only be applied to the right-

hand (ket) side of the (nl|kr) integral. This leads to

(nl|kk)dkr as a CNDO-like approximation for these two-

electron integrals.

Neglect of diatomic differential overlap (NDDO) [25]

is a less drastic approximation than CNDO. If basis

functions k and r are on the same atom center (but not

necessarily the same basis function), then the integral

(nl|kr) is not ignored. As noted earlier for CNDO, the

NDDO approximation can only be applied to the ket side

of the integral.

A third approximation, similar to NDDO, has also been

considered, that excludes all four-center two-electron

integrals. Unlike CNDO this third approach does not

neglect any three-center integrals. Therefore, if n, l, k, and

r all reside on different atom centers, the (nl|kr) integral is

not calculated. However, if a common atom center is

shared between any two of the three ab initio basis func-

tions (l, k and r) then the integral is calculated. This

approximation is referred to as the three-center method.

The results obtained using the CNDO-like, NDDO-

like, and three-center methods are summarized in

Table 9. The CNDO-like method is based on the most

radical approximation of three methods, so it is no sur-

prise that it suffers from the largest errors. The NDDO-

like approximations are less radical, and the results are

improved relative to those of CNDO, but the errors are

still unacceptably large. Of the three methods, the three-

center method provides the most accurate predicted

exchange repulsion energies. In fact, for water, methanol,

and dichloromethane dimers, the predicted energies are

within 1.5 kcal/mol of the correct values. However, the

errors grow to unacceptable levels for acetonitrile, ace-

tone, and DMSO dimers.

Despite the fact that the three-center method does

modestly well for three of the six dimers, it does not reduce

the computational time requirement significantly. Of the

108 s required for the DMSO dimer calculation in the first

column of Table 1, approximately 23.6 s are spent calcu-

lating the two-electron integrals. When the three-center

method is used, the total time of the run is reduced to 104 s.

Even though this saves roughly 17% of the time required to

calculate the two-electron integrals, the accuracy suffers

too much for it to be a useful approximation.

One consideration to keep in mind is that semi-empirical

methods include approximations for the one-electron inte-

grals as well as the two-electron integrals, and in methods

Table 8 Number of two-electron integrals required for dimer

calculations

Eqs. 350, 37 Hartree–Fock

Water 8.2E?06 2.3E?07

Methanol 1.1E?08 3.3E?08

Acetone 8.7E?08 2.9E?09

Acetonitrile 2.5E?08 7.6E?08

Dichloromethane 5.5E?08 1.7E?09

DMSO 1.4E?09 4.3E?09

Table 9 Exchange repulsion energies (in kcal/mol) for the three-

center, NDDO, and CNDO methods compared to the predicted

exchange repulsion energy from a Morokuma energy decomposition

Three-center NDDO CNDO Morokuma

Water 6.1 11.7 25.4 4.9

Methanol 6.2 18.8 39.6 5.15

Dichloromethane 0.85 2.4 6.1 0.79

Acetonitrile 5.3 14.1 25.3 2.21

Acetone 4.2 12.9 27.9 2.27

DMSO 11.4 33.0 80.5 6.38
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like CNDO and NDDO, these approximations are related to

each other. To be consistent, one should introduce both the

one-electron and two-electron approximations. None of the

one-electron integral approximations were included in this

present study. It is possible that the errors experienced in

the two-electron integrals could be canceled or offset by

errors associated with approximations associated with the

one-electron integrals. In order to fairly assess the use of

semi-empirical methods, the approximations to the one-

electron integrals should be included as well. This will be

the subject of a future study.

The Mulliken approximation [26, 27] approximates the

(nl|kr) two-electron integrals by replacing them with
1
2

nljkkð ÞSrk þ 1
2

nljrrð ÞSrk. The Mulliken approximation

has been tested for the water dimer, and it provides

inconsistent results. Though many integrals are approxi-

mated very closely, some individual integrals can experience

unacceptable errors (as much as 1 kcal/mol for just one

individual integral).

5 Gradient considerations

The gradient (first derivative of the energy with respect

to the nuclear coordinates) of the exchange repulsion

energy was derived previously [16]. This is accom-

plished in two steps, giving rise to two equations. The

first equation provides the derivative of the exchange

repulsion energy with respect to the ab initio coordinates

(xa)

oEXR

oxa
¼ �2

X

i2A

X

j2B

ijjijð Þa � 2
X

i2A

X

j2B

Sa
ij 2 VA

ij þ GA
ij

� �
þ
X

l2B

FB
jl Sli

" #

� 2
X

i2A

X

j2B

Sij 2 VAa

ij þ GAa

ij

� �
þ
X

l2B

FB
jl S

a
li

" #

þ 2
X

i2A

X

j2B

Sa
ij

X

k2A

Skj FA
ik þ VB

ik þ 2JB
ik

� �
þ Sij VA

jj þ 2JA
jj

� �
�
X

k2A

Skj ikjjjð Þ
" #

þ 2
X

i2A

X

j2B

Sij

X

k2A

Sa
kj FA

ik þ VB
ik þ 2JB

ik

� �
þ Skj FAa

ik þ VBa

ik þ 2JBa

ik

� �� �
þ Sa

ij VA
jj þ 2JA

jj

� �

þ Sij VAa

jj þ 2JAa

jj

� �
�
X

k2A

Sa
kj ikjjjð Þ þ Skj ikjjjð Þa

h i

2
6664

3
7775

þ
X

m2A

X

i2A

X

j2B

Sa
mi

2 mjjijð Þ þ Smj 2 VA
ij þ GA

ij

� �
þ
X

l2B

FB
jl Sli

 !

þ Sij 2 VA
mj þ GA

mj

� �
þ
X

l2B

FB
jl Slm

 !

� Smj

X

k2A

Skj FA
ik þ VB

ik þ 2JB
ik

� �
þ Sij VA

jj þ 2JA
jj

� �
�
X

k2A

Skj ikjjjð Þ
 !

� Sij

X

k2A

Skj FA
mk þ VB

mk þ 2JB
mk

� �
þ Smj VA

jj þ 2JA
jj

� �
�
X

k2A

Skj mkjjjð Þ
 !

2

6666666666666666664

3

7777777777777777775

þ
X

m2A

X

i2A

X

n2A

X

j2B

Sa
mnSij

2 4 ijjmnð Þ � imjjnð Þ � injjnð Þ½ �

�
X

k2A

Skj 4 ikjmnð Þ � imjknð Þ � injkmð Þ½ �

2
64

3
75

�
X

m2A

X

i2A

X

k2A

X

j2B

Sa
mkSij

Smj FA
ik þ VB

ik þ 2JB
ik

� �
þ Skj FA

im þ VB
im þ 2JB

im

� �
þ 4Sij jjjmkð Þ

� Smj ikjjjð Þ � Skj imjjjð Þ

" #
ð39Þ

Theor Chem Acc (2010) 125:481–491 489

123



The second gradient expression is the first derivative

of the energy with respect to the coordinates of the

EFP (xb):

Because of the product rule and the chain rule, many of

the terms in Eqs. 39 and 40 do not contain a derivative.

These equations will be readily implemented in the future.

6 Conclusions

The ab initio/EFP2 exchange repulsion energy and the

corresponding exchange repulsion Fock operator have been

implemented in GAMESS. Both expressions have been

tested on six dimers and provide promising results. The

accuracy of both expressions is excellent when the correct

two-electron integrals are used in those instances in which

potential approximations fail. The code has been made

more efficient by avoiding the re-calculation of the Fock

operator during every SCF iteration and by computing the

integrals directly in the AO basis. The current computa-

tional bottleneck lies in the calculation of the two-electron

integrals, and it is likely that an implementation of the

Schwarz inequality will reduce this bottleneck. As it is

currently implemented, the method is faster than a HF

dimer calculation, yet it provides results that approach

perturbation theory in accuracy. With this in mind, the

method obtains very good results with modest efficiency.

In actual applications of the EFP2-QM method, one will

typically have one QM molecule or reacting system, plus

many EFP (solvent) molecules. The greater the ratio of

EFP molecules to QM molecules, the greater will be the

overall computational efficiency.

The implementation of the analytic gradient will be

reported in a future work. While the energy expression is in

itself very useful, as noted above, the availability of the

analytic gradient will facilitate the computation of many

other properties and processes, such geometries of clusters,

vibrational frequencies, and molecular dynamics

simulations.
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